00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027 #ifndef _VECTOR_H_
00028 #define _VECTOR_H_
00029
00030 #include "Tuple3.h"
00031
00032 class Vector : public Tuple3 {
00033 public:
00034 Vector() {}
00035 Vector(const float v[3]) : Tuple3(v) {}
00036 Vector(const double v[3]) : Tuple3(v) {}
00037 Vector(Scalar x, Scalar y, Scalar z) : Tuple3(x, y, z) {}
00038
00039 Vector& operator+=(const Vector& v);
00040 Vector& operator-=(const Vector& v);
00041 Vector& operator*=(Scalar s);
00042 Vector& operator/=(Scalar s);
00043
00044 Scalar length2() const;
00045 Scalar length() const;
00046
00047 bool approxZero() const;
00048
00049 void normalize();
00050 Vector normalized() const;
00051
00052 int closestAxis() const;
00053
00054 static Vector random();
00055 };
00056
00057 Vector operator+(const Vector& v1, const Vector& v2);
00058 Vector operator-(const Vector& v1, const Vector& v2);
00059 Vector operator-(const Vector& v);
00060 Vector operator*(const Vector& v, Scalar s);
00061 Vector operator*(Scalar s, const Vector& v);
00062 Vector operator/(const Vector& v, Scalar s);
00063
00064 Scalar dot(const Vector& v1, const Vector& v2);
00065
00066 Scalar length2(const Vector& v);
00067 Scalar length(const Vector& v);
00068
00069 bool approxZero(const Vector& v);
00070 bool approxEqual(const Vector& v1, const Vector& v2);
00071
00072 Scalar angle(const Vector& v1, const Vector& v2);
00073 Vector cross(const Vector& v1, const Vector& v2);
00074 Scalar triple(const Vector& v1, const Vector& v2, const Vector& v3);
00075
00076
00077
00078 inline Vector& Vector::operator+=(const Vector& v) {
00079 comp[X] += v[X]; comp[Y] += v[Y]; comp[Z] += v[Z];
00080 return *this;
00081 }
00082
00083 inline Vector& Vector::operator-=(const Vector& v) {
00084 comp[X] -= v[X]; comp[Y] -= v[Y]; comp[Z] -= v[Z];
00085 return *this;
00086 }
00087
00088 inline Vector& Vector::operator*=(Scalar s) {
00089 comp[X] *= s; comp[Y] *= s; comp[Z] *= s;
00090 return *this;
00091 }
00092
00093 inline Vector& Vector::operator/=(Scalar s) {
00094 assert(!eqz(s));
00095 return *this *= 1 / s;
00096 }
00097
00098 inline Vector operator+(const Vector& v1, const Vector& v2) {
00099 return Vector(v1[X] + v2[X], v1[Y] + v2[Y], v1[Z] + v2[Z]);
00100 }
00101
00102 inline Vector operator-(const Vector& v1, const Vector& v2) {
00103 return Vector(v1[X] - v2[X], v1[Y] - v2[Y], v1[Z] - v2[Z]);
00104 }
00105
00106 inline Vector operator-(const Vector& v) {
00107 return Vector(-v[X], -v[Y], -v[Z]);
00108 }
00109
00110 inline Vector operator*(const Vector& v, Scalar s) {
00111 return Vector(v[X] * s, v[Y] * s, v[Z] * s);
00112 }
00113
00114 inline Vector operator*(Scalar s, const Vector& v) { return v * s; }
00115
00116 inline Vector operator/(const Vector& v, Scalar s) {
00117 assert(!eqz(s));
00118 return v * (1 / s);
00119 }
00120
00121 inline Scalar dot(const Vector& v1, const Vector& v2) {
00122 return v1[X] * v2[X] + v1[Y] * v2[Y] + v1[Z] * v2[Z];
00123 }
00124
00125 inline Scalar Vector::length2() const { return dot(*this, *this); }
00126 inline Scalar Vector::length() const { return sqrt(length2()); }
00127
00128 inline bool Vector::approxZero() const { return length2() < EPSILON2; }
00129
00130 inline void Vector::normalize() { *this /= length(); }
00131 inline Vector Vector::normalized() const { return *this / length(); }
00132
00133 inline int Vector::closestAxis() const {
00134 Scalar a[2];
00135 int axis = (a[X] = fabs(comp[X])) < (a[Y] = fabs(comp[Y])) ? Y : X;
00136 return a[axis] < fabs(comp[Z]) ? Z : axis;
00137 }
00138
00139 inline Vector Vector::random() {
00140 Scalar z = 2 * rnd() - 1;
00141 Scalar r = sqrt(1 - z * z);
00142 Scalar t = TWO_PI * rnd();
00143 return Vector(r * cos(t), r * sin(t), z);
00144 }
00145
00146 inline Scalar length2(const Vector& v) { return v.length2(); }
00147 inline Scalar length(const Vector& v) { return v.length(); }
00148
00149 inline bool approxZero(const Vector& v) { return v.approxZero(); }
00150 inline bool approxEqual(const Vector& v1, const Vector& v2) {
00151 return approxZero(v1 - v2);
00152 }
00153
00154 inline Scalar angle(const Vector& v1, const Vector& v2) {
00155 Scalar s = sqrt(v1.length2() * v2.length2());
00156 assert(!eqz(s));
00157 return acos(dot(v1, v2) / s);
00158 }
00159
00160 inline Vector cross(const Vector& v1, const Vector& v2) {
00161 return Vector(v1[Y] * v2[Z] - v1[Z] * v2[Y],
00162 v1[Z] * v2[X] - v1[X] * v2[Z],
00163 v1[X] * v2[Y] - v1[Y] * v2[X]);
00164 }
00165
00166 inline Scalar triple(const Vector& v1, const Vector& v2, const Vector& v3) {
00167 return v1[X] * (v2[Y] * v3[Z] - v2[Z] * v3[Y]) +
00168 v1[Y] * (v2[Z] * v3[X] - v2[X] * v3[Z]) +
00169 v1[Z] * (v2[X] * v3[Y] - v2[Y] * v3[X]);
00170 }
00171
00172 #endif
00173